

||JAI SRI GURUDEV|| Sri Adichunchanagiri Shikshana Trust ® SID INSTITUTE OF TECHNOLOC

SJB INSTITUTE OF TECHNOLOGY

(Affiliated to VTU, Approved by AICTE - New Delhi, Accredited by NAAC with "A" Grade) No. 67, BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru - 560 060 Department of Computer Science & Engineering

Course Title: Automata Theory And Computability		Course Code: 18CS54	
Semester: V-A/B/C	Academic Year: 2021 – 2022	Total hrs.:40	Hrs./Week: 03
Int. Exam Hrs.: 1hr 30min	n CIE :Max. Marks: 40		
Ext. Exam Hrs.: 03SEE: Max.Marks:60			
Lesson Plan Author / Desgn. / Dept.: Dr. Gopalakrishna M T/ Chandrashekar D K/ Professor / Asst. Professor /			
CSE			

Course Objectives:

- Introduce core concepts in Automata and Theory of Computation.
- Identify different Formal language Classes and their Relationships.
- Design Grammars and Recognizers for different formal languages.
- Prove or disprove theorems in automata theory using their properties.
- Determine the decidability and intractability of Computational problems.

Course Outcomes:

- **CO1**: Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation.
- **CO2**: Learn how to translate between different models of Computation (e.g., Deterministic and Non-deterministic and Software models).
- **CO3**: Design Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers.
- **CO4**: Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness.
- **CO5**: Classify a problem with respect to different models of Computation.

<u>Syllabus</u>

Course Title: Automata Theory And Computability

Module I	Teaching Hours
Title: Why study the Theory of Computation, Languages and Strings:	
Strings, Languages. A Language Hierarchy, Computation, Finite State Machines (FSM):	08
Deterministic FSM, Regular languages, Designing FSM, Nondeterministic FSMs, From	
FSMs to Operational Systems, Simulators for FSMs, Minimizing FSMs, Canonical form	
of Regular languages, Finite State Transducers, Bidirectional Transducers.	
Blooms Taxonomy:L1 – Remembering, L2 – Understanding, L3 – Applying	

Module II	Teaching Hours
Title: Regular Expressions (RE):	
what is a RE?, Kleene's theorem, Applications of REs, Manipulating and Simplifying	08
REs. Regular Grammars: Definition, Regular Grammars and Regular languages. Regular	
Languages (RL) and No regular Languages: How many RLs, To show that a language is	
regular, Closure properties of RLs, to show some languages are not RLs	
Blooms Taxonomy:L1 – Remembering, L2 – Understanding, L3 – Applying	

Module III	Teaching Hours	
Title: Context-Free Grammars(CFG):		
Introduction to Rewrite Systems and Grammars, CFGs and languages, designing CFGs,		
simplifying CFGs, proving that a Grammar is correct, Derivation and Parse trees,		
Ambiguity, Normal Forms. Pushdown Automata (PDA): Definition of non-deterministic		
PDA, Deterministic and Non-deterministic PDAs, Non-determinism and Halting,		
alternative equivalent definitions of a PDA, alternatives that are not equivalent to PDA.		
Blooms Taxonomy:L1 – Remembering, L2 – Understanding, L3 – Applying		

Module IV	Teaching Hours
Title: Context-Free and Non-Context-Free Languages:	
Where do the Context-Free Languages(CFL) fit, showing a language is context-free,	
Pumping theorem for CFL, Important closure properties of CFLs, Deterministic CFLs.	
Algorithms and Decision Procedures for CFLs: Decidable questions, Un-decidable	
questions. Turing Machine: Turing machine model, Representation, Language	
acceptability by TM, design of TM, Techniques for TM construction.	
Blooms Taxonomy: L2 – Understanding, L3 – Applying, L4 – Analysing,L5 – Evaluating.	

Module/Unit: V	Teaching Hours
Title: Variants of Turing Machines (TM), The model of Linear Bounded automata: Decidability: Definition of an algorithm, decidability, decidable languages, Undecidable languages, halting problem of TM, Post correspondence problem. Complexity: Growth rate of functions, the classes of P and NP, Quantum Computation: quantum computers, Church-Turing thesis.	08

DAYS	UNIT No. & Title	SUB TOPICS	Planned Date
1.		Review of Mathematical Theory: The Theory of Computation, Languages and Strings: A Language Hierarchy	04-10-2021
2.		A Language Hierarchy Finite State Machines (FSM): Deterministic FSM	09-10-2021
3.	-	Finite State Machines (FSM): Deterministic FSM	11-10-2021
4.		Designing FSM, Regular languages	13-10-2021
5.	Module I: Why study the Theory	Nondeterministic FSMs,	16-10-2021
6.	of Computation:	Students will be able to understand the concepts of From FSMs to Operational Systems,	18-10-2021
7.		Students will be able to understand the concepts of Minimizing FSMs Simulators for FSMs Canonical form of Regular languages,	23-10-2021
8.		Students will be able to understand the concepts of Finite State Transducers, Bidirectional Transducers	25-10-2021
9.	-	Regular Expressions (RE): what is a RE? Kleene's theorem, Applications of REs,	27-10-2021
10.		Manipulating and Simplifying REs. Regular Grammars: Definition,	30-10-2021
11.		Regular Grammars and Regular languages	06-11-2021
12.	Module II : Regular	Regular Languages (RL) and Non regular Languages	08-11-2021
13.	Expressions (RE)	Regular Languages (RL) and How many RLs,	10-11-2021
14.		To show that a language is regular	13-11-2021
15.	-	Closure properties of RLs,	15-11-2021
16.		To show some languages are not RLs.	17-11-2021
17.		Introduction to Rewrite Systems and Grammars, CFGs and languages,	20-11-2021
18.	Module III:	designing CFGs, Simplifying CFGs, proving that a Grammar is context-free.	24-11-2021
19.		Derivation and Parse trees, Ambiguity, Normal Forms.	27-11-2021
20.	Grammars(CFG)	Pushdown Automata (PDA): Definition of non-deterministic PDA,	29-11-2021
21.		Deterministic and Non-deterministic PDAs,	01-12-2021
22.		Non-determinism and Halting	04-12-2021

23.	bonanPa	Alternative equivalent definitions of a PDA,	06-12-2021
24.	0	Alternatives that is not equivalent to PDA.	08-12-2021
25.		Important closure properties of CFLs,	11-12-2021
26.		Deterministic CFLs. Algorithms and Decision Procedures for CFLs:	13-12-2021
27.		Decidable questions, Un-decidable	15-12-2021
28.		Turing Machine: Turing machine model	18-12-2021
29.	Module IV: Context- Free and Non- Context-Free Languages	Representation, Language acceptability by TM,	20-12-2021
30.		Design of TM, Techniques for TM construction	22-12-2021
31.		Context-Free and Non-Context-Free	27-12-2021
32.		Where do the Context-Free Languages(CFL) fit	29-12-2021
33.		Showing a language is context-free,	01-01-2021
34.		Pumping theorem for CFL, The model of Linear Bounded automata	03-01-2021
35.		Decidability: Definition of an algorithm	05-01-2021
36.	Module V: The	Decidability, decidable languages, Undecidable languages,	08-01-2021
37.	 model of Linear Bounded automata 	Halting problem of TM, Post	10-01-2021
38.		Complexity: Growth rate of functions, The classes of P and NP	12-01-2021
39.		Quantum Computation: quantum computers	15-0-2021
40.		Church-Turing thesis.	17-012021

Reference / Text Book Details

Sl. No.	Title of Book	Author	Publication	Edition
1	Automata, Computability and Complexity	Elaine Rich	Pearson Education, 2012/2013	1st Edition
2	Theory of Computer Science	K L P Mishra, N Chandrasekaran	PhI, 2012	3rd Edition
3	Introduction to Automata Theory, Languages, and Computation	John E Hopcroft, Rajeev Motwani, Jeffery D Ullman	Pearson Education, 2013.	3 rd Edition
4	Introduction to the Theory of Computation	Michael Sipser	Cengage learning,2013	3 rd Edition

Faculty In-Charge

Head of the Department ent Dept. of Computer Science and Engines..... SJB INSTITUTE OF TECHN(ALC). BGS Health & Education Com-No. 67, Uttarahaili Road, Kenge.... Bengalum 550 per